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Abstract

The NASA Lewis Research Center and Aerojet
Propulsion Division have been working together to
develop software capable of detecting sensor failures on
liquid rocket engines in real time, and with a high degree
of confidence. This software could be used in a rocket
engine controller to prevent the erroneous shutdown of an
engine due to sensor failures which would otherwise be

_interpreted as engine failures by the control software.

The approach taken combines analytic redundancy
with Bayesian belief networks to provide a solution which
has well-defined real-time characteristics, well-defined error
rates, and is scalable to validate any number of engine
sensors. Analytical redundancy is a technique in which a
sensor's value is predicted by using values from other,
usually non-redundant, sensors and known or empirically
derived mathematical relations. A set of sensors and a set
relationships among them form a network of cross-checks
which can be used to periodically validate all of the
sensors in the network. Bayesian belief networks provide a
mathematically sound method of determining if each of
the sensors in the network is valid, given the results of all
of these cross-checks.

This approach has been codified in an algorithm
which has been successfully demonstrated on a rocket
engine controller in real-time on the Technology Test Bed
at the NASA Marshall Space Flight Center. Current
efforts are focused on extending the demonstration system
to provide a real-time validation capability for
approximately 100 sensors on the Space Shuttle Main
Engine.

I, Introduction

The safety and reliability of rocket engines would
be enhanced if engine controllers and advanced safety
systems could determine if sensors were supplying faulty
data. This ability, termed sensor data validation, could
prevent the controller or safety system from making
critical decisions, such as the decision to shut an engine
down, on the basis of data from anomalous or failed
Sensors.

Efforts to develop an approach to real-time sensor
data validation (SDV) for liquid rocket engines have

evolved over four years, from conceptual design (1990) to
software implementation and test in a rocket engine
controller on the Technology Test Bed test stand (1992).
More recent efforts have focused on scaling up the
capability demonstrated on Technology Test Bed to
validate the majority of sensors used for redlines, control
and advanced anomaly detection on the Space Shuttle
Main Engine (SSME).

The remainder of this paper is organized as follows: -
Section I describes the initial study performed on this
program which led to the development of the current
approach; Sections IIT and IV present the theoretical
background and implementation details of the approach;
Section V presents the experimental results obtained to
date; and Sections VI and VII present on-going and
planned work on the program.

II. System Architecture Study

In 1990 a System Architecture Study of SDV was
performed by Aerojet which reviewed common sensor
failure modes on the SSME, the data validation process
used by SSME data analysts at MSFC, and a number of
alternative approaches to automating SDV for post-
test/post-flight data analysis [1].

The approaches to SDV reviewed included range and
rate limit checking, various pattern-matching techniques,
and analytical redundancy. The conclusion of this study
was that no single algorithmic method should be used for
SDV; rather several methods should be used to analyze
sensor data and the results integrated or “fused” into a final
conclusion regarding the integrity of each sensor. Several
approaches to information fusion were also reviewed
for their applicability to SDV, including binary logic,
ad-hoc certainty factors, Dempster-Shafer theory, and
Bayesian belief networks [2]. Bayesian belief networks
were selected as the best strategy, since they were believed
to be the most mathematically sound approach to
information fusion.

11, Probabilistic Approach to Analytical Redun

Real-time sensor data validation was targeted as a
demonstration application for Aerojet's Advanced Rocket



Engine Controller (AREC), developed on Aerojet's
Integrated Controls and Health Management IR&D in
1991. The approach taken combined analytical redundancy
with Bayesian information fusion techniques to achieve a
solution which has well-understood false alarm and missed
detection error rates, operates within hard time constraints,
and is scalable to validate any number of sensors.

Analytical redundancy is a technique in which a
sensor's value is predicted by using values from other,
usually non-redundant, sensors and known or empirically
derived relations among the sensor values. For example,
Fig. 1 shows a relation among three sensor values using a
standard formula for fluid line resistance. Relations can
also be empirically derived using standard statistical
regression techniques. The simplest form of these
empirical relations is a linear equation relating two sensor
values, as shown in Fig. 2. In general, a relation is used
to provide validation information for all related sensors.

A group of sensors and a set of relations among
them define a network. Fig. 3 shows a very simple
example of a sensor validation network for three
parameters on the SSME.

The difference between a value predicted using a
relation and a directly sensed value is called a residual,
and is a measure of the quality of the relation, given that
the sensors involved are known to be working properly.
In the approach taken in this work, one or more relations
are defined for every sensor in the network which relate its
value to the values of one or more other sensors in the
network. The mean and standard deviation of the relation
residuals (evaluated on normal engine test firing data) are
also computed.
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Given this information, a validation algorithm
could sample sensor values every controller cycle during
an engine firing and determine if each of the relations
holds or not by thresholding on a particular residual, such
as three standard deviations. Once the status of every
relation in the network has been determined to either
“hold” or “not hold”, the validation algorithm makes a
conclusion about the validity of each sensor in the
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Fig. 3. Example Sensor Validation Network



network (the one-cycle decision problem). Conclusions
made during several consecutive controller cycles may be
fused together in order to disqualify a sensor (the multi-
cycle decision problem). Fig. 4 summarizes this overall
approach.

Before this general approach could be implemented,
several questions needed to be answered:

+ How many relations are needed to validate a sensor?

« How many of a sensor's relations need to hold in
order to validate the sensor during one controller
cycle?

» What threshold should be used on the individual
relation residual tests?

+ Should sensor value averaging or other multi-cycle
strategies be used?

+ Can a scalable approach to validation be developed
which will work with any number of sensors?

+ Do all relations need to be evaluated every cycle to
validate all sensors?

1. Bayesian Analysis

Bayesian probability theory provides a formal
framework within which the questions posed above can be
answered. Bayesian probability theory provides a
mathematically sound approach to the problem of
information fusion — the combination of evidence
from several sources into a single, consistent model. In
information fusion, uncertainties in the sources of
evidence (i.e., inaccuracies in the sensors or uncertainties
in the fault detection algorithms themselves) are explicitly
modeled and accounted for.

A Bayesian Belief Network is a graphical
representation of a joint probability distribution of a set of
random variables [2,3]. As an example, the validation
network shown in Fig. 3 can be represented as the Belief
Network shown in Fig. 5. In this network, the nodes S1,
S2, §3, and S4 represent the status of the respective
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Fig. 4. Overall Approach to Real-Time Sensor Data
Validation

sensors (i.e. whether they are working or not), while the
nodes R1, R2, R3, and R4 represent whether an analytical
redundancy relationship currently holds between the
sensors or not. Connections in the network represent
influences between variables. In Fig. 3, for example, a
failure in sensor S1 would influence the expected
probability distributions on the status of relations R1,
R2, and R4.
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Fig. 5. Example Sensor Validation Network Cast into a Bayesian Belief Network for Analysis



Given the Belief Network shown in Fig. 5, the
probability of each sensor being valid given the current
status of all relations can be derived. These equations can
then be used to answer the questions posed above, and to
develop a mathematically sound approach to sensor data
validation.

The following assumptions were made in the 1991
activity in order to conduct the Bayesian analysis:

» Although several sensors may fail during a firing,
two sensors cannot fail during a single controller
cycle. The likelihood of two or more sensors
initiating a failure at the same instant in time is
very remote, and it would greatly complicate the
validation system to accommodate such
simultaneous multiple-point failures.

» Once a sensor is determined to have failed, it will
stay failed and will not be used again in any future
calculations.

» The probability of a sensor failing can be
determined from its Mean Time Between Failure

(MTBEF) as follows.
P(Sensor Invalid)* = CycleTime / MTBF.

This measure is assumed to be constant for the
duration of a single engine firing.

«  When a sensor fails it emits random values. This
is a very conservative assumption, and is a more
difficult failure mode to detect than a hard failure
(i.e., if the algorithm is able detect the random
failure mode with a high degree of confidence, it
will also be able to detect hard and drift failures).
This is an admission that a failed sensor has some
small probability of emitting a value which is
within the realm of “reasonableness” for the
parameter being measured.

The conditional probabilities required to fully define
the Belief Network shown in Fig. 5 were derived from the
assumptions given above. The following derivations
assume that all relations are binary (i.c., integrate
information from two sensors).

The probability of a relation holding, given that all
of the related sensors are working, is determined by the
threshold level placed on the relation. Thus,

* “P(A)” can be read as “the probability of A being true”.
“P(A,B)” can be read as the “the probability of A and B
being true.” “P(A | B)” can be read as “the probability of
A being true given that B is true”. “P(A | B,C)” can be
read as the “the probability of A being true given that B
and C are true”.

P(RelationHolds | Sensory Valid, SensorgValid) = K

where K is a quantile of the normal distribution (e.g., for
a 3 standard deviation relation threshold, K = 0.997).

Since a failed sensor emits random values, there is
still some probability, Py, that a given reading may fall
within the normal range of values for the sensor, causing
the relation to continue to hold. (Note that for hard sensor
failures Py = 0.) If this normal range is taken to be 3
standard deviations, then

p, = 2X3 x Standard Deviation
n= Range of Sensor
For SSME sensors, Pn has been empirically
determined to be have an average value of 0.22 (although -
it is slightly different for each sensor). The probability of
a binary relation holding given that one of its sensors has
failed is thus )

P(RelationHolds | Sensor] Invalid,SensorpValid) = Pq
P(RelationHolds | Sensor Valid, SensorpInvalid) = Pp

Similarly, the probability of a binary relation
holding given that both of its sensors have failed is

P(RelationHolds | SensoryInvalid, SensorpInvalid) = Pp2

The probabilities given above yield the following
joint probability distribution for the network shown in
Fig. 5.

P(51,52,53,S4 R1,LR2R3R4) =
P(S1) x P(S2) x P(S3) x P(S4) x
P(R1IS1,52) x P(R2IS1,S3) x P(R31S2,S3) x
P(R4IS1,54)

Given the joint distribution, the goal is to
determine the probability of any one sensor working given
the status of all relations in the network (this is the basis
for the real-time, one-cycle decision problem). This can be
achieved by using Bayes' rule. For example, after
measurements for S1, S2, S3, and S4 have been taken,
and relations R1, R2, R3, and R4 have been evaluated to
determine whether they hold or not, the probability of
sensor S1 working can be determined as follows.

P(S1,R1,R2,R3,R4)
P(R1,R2,R3,R4)

P(S1IR1,R2,R3,R4) =

Given the ability to compute the probability of a sensor
being valid or not given the status of all relations in the
network (as in the above equation), an optimum one-cycle
decision strategy can be developed by simply thresholding
on this probability. For example, Table 1 shows the
validation probabilities for sensor S1 given that the



MTBEF of S1, S2, §3, and S4 in Fig. 5 is 30 minutes, the
relation residual threshold for R1, R2, R3, and R4 is 3
standard deviations, and Py is 0.22. From this table it can
be seen that the optimum strategy, given these
assumptions, is to disqualify sensor S1 when relations
R1, R2, and R4 do not hold.

There are two measures of quality for any validation
algorithm: the false alarm and missed detection rates
(equivalent to Type I and Type Il errors in statistics,
respectively). The false alarm rate is the probability that
the validation system will disqualify a sensor, when it is
in fact working correctly. The missed detection rate is
the probability that the validation system will qualify a
sensor, when it has in fact failed (this is related to the
notion of sensitivity). These rates can be computed for
the one-cycle decision strategy described above. The false
alarm rate for sensor S1 is the sum of

P(S1=Valid,S2,53,54,R1,R2 R3,R4)

in all situations in which the validation system decides to
disqualify S1. ’

Similarly, the missed detection rate for sensor S1 is
the sum of

P(S1=Invalid,S2,53,54,R1,R2,R3,R4)

in all situations in which the validation system decides to
validate S1.

These two quality measures were used to evaluate
many alternative answers to the questions posed above.
The results indicated that:

» At least three relations involving a sensor's value are
required to provide enough information to disqualify
the sensor. '

» The number of relations involving a sensor's value

which must be violated in order to disqualify the sensor
varies with the number of relations. For example, in
the network shown in Fig. 5 in which sensor S1 is
involved in three relations, all three relations must be
found not to hold before the common sensor can be
disqualified.

» A 3 standard deviation residual threshold should be used

on all relations to determine if they hold or not.

* A multi-cycle decision strategy must be used in order

to get the error rates below acceptable levels. The best
strategy evaluated was a 3-of-5 strategy, in which a
sensor must be judged bad (using the one-cycle
strategy) on at least three of the last five controller
cycles before it can be conclusively disqualified.

Of the results obtained, the most significant was
that only the relations directly bearing on a sensor need to
be evaluated in order to validate the sensor. For example,
in the network shown in Fig. 5 only relations R1,R2, -
and R4 need to be considered when validating S1.

Given this, and the fact that a voting table can be
constructed which specifies the number of those relations
which must be violated before the sensor can be
disqualified, an algorithm can be designed which only
evaluates relations for a particular sensor until it is
impossible to disqualify it. For example, when
validating sensor S1 in the network shown in Fig. 3, the
relations R1, R2, and R4 can be examined in sequence,
but as soon as one is found to hold, the validation process
for S1 can stop because it is impossible to disqualify it
(i.e., all three relations must be violated in order to
disqualify a sensor with three relations). Thus, all
relations in the network do not need to be evaluated every
cycle.

P(S1=ValidiR1=Holds,R2=Holds,R3=Holds,R4=Holds)
P(S1=ValidiR 1=Holds,R2=Holds,R 3=Holds,R4=NotHold)

P(S1=ValidiR 1=Holds,R2=Holds,R 3=NotHold R4=Holds)
P(S1=ValidR 1=Holds,R2=Holds,R3=NotHold,R4=NotHold)
P(S1=ValidiR 1=Holds,R2=NotHold,R3=Holds,R4=Holds)
P(S1=ValidIR 1=Holds,R2=NotHold,R3=Holds,R4=NotHold)
P(S1=ValidIR 1=Holds,R2=NotHold,R3=NotHold , R4=Holds)
P(S1=ValidR 1=Holds,R2=NotHold R 3=NotHold,R4=NotHold)
P(S1=ValidlR 1=NotHold, R2=Holds,R3=Holds,R4=Holds)
P(S1=ValidiR 1=NotHold,R2=Holds,R3=Holds,R4=NotHold) .
P(S1=ValidIR 1=NotHold R2=Holds,R3=NotHoild,R4=Holds)
P(S1=ValidiR 1=NotHold ,R2=Holds,R3=NotHold,R4=NotHold)
P(S1=ValidiR 1=NotHold R2=NotHold R3=Holds,R4=Holds)
P(S1=ValidiR 1=NotHold R2=NotHold ,R3=Holds,R4=NotHold)
P(S1=ValidR 1=NotHold,R2=NotHold ,R3=NotHold ,R4=Holds)

P(S1=ValidR 1=NotHold ,R2=NotHold.R3=NotHold , R4=NotHold)

O

.9997204

9997204
9997191
7523449
9998867
.8828096
9997191
7523449
9998867
.8828096
=0.7515119
= 0.002574868
=0.9227433
= 0.01009216

COOCOCOOOOO -

Table 1. Example Validation Probabilities for Sensor S1




The maximum number of relations which can be
expected to fail per controller cycle can be computed and
translated into a hard upper bound on processing time for

the validation system. As an example, assume we are
validating S = 100 sensors, each of which has 4 binary

relations, with a total of R = 200 relations, and that the

Bayesian analysis indicates that the one-cycle strategy

should only flag a bad sensor when all 4 of the sensor's
relations fail.

Assuming that at most one sensor can fail on a

given controller cycle, the maximum number of relations
which need to be evaluated each cycle is given by the
following:

Assuming that one sensor did fail on a given cycle,
the number of relations that need to be evaluated to
confirm the failure is simply the number of
immediate relations that the sensor has (in the worst
case they would all need to be checked). For a sensor
with four relations, all four would need to be
evaluated in order to disqualify the sensor.

For each of the remaining valid sensors, the first
relation always needs to be evaluated. However, we
can compute the probability of a given number of
additional relations failing and pick the smallest
number that gives us the reliability we want. The
probability of more than r relations out of the
unevaluated N =R - § - 3 =97 relations in the
network failing (due to noise and modelling errors) is:

N
Z(I}I\{ i) x P(RelationHolds)N-1

i=r+1
x P(RelationNotHold)1

This is a sum of binomial probabilities, which for
large N and small P(RelationNotHold) can be
approximated by a sum of Poisson probabilities,
with u=N x P(RelationNotHold). Given thatN =
97 and P(RelationNotHold)=0.003 (for a 3-standard-
deviation threshold), making p=0.291. A table of
Poisson probability sums indicates that at most nine
additional relations would need to be checked to yield
a very high degree of confidence. :

Thus, for each of the 99 valid sensors, one relation

must always be checked, and we will allow an additional
nine to be checked in the overall network to guarantee a
high level of confidence. For the one failed sensor, all four
of its relations must be checked. Thus, in the worst case,
a total of 100 + 3 + 9 = 112 relations, or 56% of all
relations, need to be evaluated on any given cycle (this
ratio decreases as more relations per sensor are used). The
small number of relations which need to be evaluated each
cycle, coupled with the fact that only the relations directly

involving a sensor need to be evaluated for validation,
allowed an algorithm to be developed which is entirely
scalable (i.e., will work with a large number of sensors
and relations).

These results are based on our assumptiohs about

the accuracy and reliability of the sensors on the SSME.
Although studies have shown that these results are
insensitive to small changes in the assumed parameter
values (corroborated by De Bruyne [4]), large changes
would require a new analysis (e.g., if the system were to
be used to validate sensors on a power plant). In
particular, order-of-magnitude changes in sensor
reliabilities would require a re-analysis.

IV. Sof; Design

The algorithm and data structures for the core

sensor validation routine which performs the one-cycle
decision making are outlined in Fig. 6 and Fig. 7,
respectively. Every controller cycle, each sensor is
checked in sequence. A sensor check consists of
evaluating all of the relations which directly bear on the
sensor until a conclusion about its validity can be made.
Typically, this will involve evaluating a very small
number of relations and then stopping when it becomes
impossible to disqualify the sensor. When a sensor is
permanently disqualified, all relations which use its value
are deactivated. This ensures that the system will not try
to perform validation using data from a failed sensor.
Thus, the algorithm keeps track of which relations are
active and which are inactive, and will continue to validate
a sensor even when fewer relations are available. Sensors
are always allocated at least one more relation than
indicated by the Bayesian analysis so that a given sensor
can still be validated following the disqualification of one
or more of the sensors it is cross-checked against.

Several additional software modules were developed

to augment the core one-cycle validation routine. These
include:

Steady-State Detection — Detects when the engine has
reached one of a known set of steady-state conditions.

Dynamic Relation Biasing — In order to get the
sensitivity required to detect sensor failures before hard
limits (redlines) were exceeded, the significance of
engine-to-engine variations in operating conditions had
to be understood and addressed. To handle this, the
system took several data samples as it entered each
steady-state condition and biased the relations
accordingly. This biasing was limited, however, to
prevent accommodating data from sensors which may
have failed during transients (i.e., the bias term was
itself thresholded).



OneCycleValidate (Sensor)

Passed « 0

Validated « False

NumActiveRelations «

CountActiveRelations (Sensor.Relation_List)
DO for each Relation in Sensor.Relation_List UNTIL Validated
IF(Relation.Status is Active) THEN
IF(Relation.Eval_Function()) THEN
Passed ¢« Passed + 1
IF(Passed 2 PassTable[NumActiveRelations]) THEN
Validated « True
RETURN (Validated)

Fig. 6. One-Cycle Sensor Validation Algorithm
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Fig. 7. Primary Data Structures Used in Sensor Validation Software

The AREC-hosted SDV system software consisted
of about 1,000 lines of C code. It was developed on a
Sun SPARCstation using recorded sensor data from
SSME tests. A network was used to validate the High
Pressure Fuel Turbine Discharge Temperature (HPFT DS
T) sensors using six parameters and eleven binary
empirical relations.

The models used in the AREC-hosted SDV system
were empirically derived, binary models, based on data
from eight nominal test firings. In general, either linear
or cubic models were derived. Most relationships
involving only pressures and/or speeds appeared linear

- when cross-plotted. However, relationships involving
temperatures (particularly the High Pressure Fuel Turbine
Discharge Temperatures) appeared to have a cubic
relationship when cross-plotted. :

Simulation Laboratory Tests

Following extensive non-real-time testing of the
algorithm, the sensor validation software was integrated
into the Advanced Rocket Engine Controller and set up in
Aerojet's Real-Time Simulation Laboratory. This facility
is based on an AD-100 multiprocessor computer, which is
capable of either simulating engine firings or replaying
data from engine firings in real-time. The AD-100 was

programmed to replay recorded data from 10 SSME firings
in order to test the AREC and the real-time characteristics
of the sensor validation system. The system correctly
monitored nine normal SSME tests in real time without
any false alarms being generated. The system correctly
detected a hard failure in HPFT DS T on a tenth SSME
test dataset [5].

In order to evaluate the sensitivity of the system to “soft”
sensor failures in a real-time environment, a series of tests
were run in which a slow drift in HPFT DS T (high or
low) was simulated by the AD-100 computer while all
other sensors were held at their nominal values (engine
test data was not used for these tests). The point at
which the system disqualified the sensor was then
recorded. These tests indicated that the system had
adequate sensitivity to soft failures.

Real-Time Validation on the Technol TestB

Following tests in Aerojet's Real-Time Simulation
Laboratory, the AREC-based sensor validation system was
installed in the Technology Test Bed blockhouse at
MFSC to receive and analyze real-time data from
Technology Test Bed hot-fire tests. The same validation
network and sensor validation software configuration used
in the Simulation Laboratory tests were used at
Technology Test Bed.



Table 2 summarizes the results of the Technology
Test Bed tests. The sensor validation system correctly
tracked engine start, stop, and power level transitions,
performed bias training, and monitored nominal data
without issuing any false alarms. -However, none of the
monitored sensors experienced failures during the test
series, so the sensitivity of the system in the Technology
Test Bed environment could not be established. The
redline sensor which caused the shutdown of Test TTB-
033 was not part of the validation network being
evaluated.

VI lin

In 1992 Aerojet, under contract to LeRC, undertook
the task of determining the viability of using analytical
redundancy to validate the majority of the sensors used on
SSME for control and health monitoring [6]. The basic
approach was to identify and investigate sets of engine
parameters whose measurements are statistically correlated
for a nominal engine firing, or whose measurements are

“known to be related via first-principle (characteristic)
equations.

nsor Selection

A set of 88 engine sensors measuring 41
parameters was investigated in this task. Some of these
parameters were selected as being critical to safely
operating the engine, including control and redline
parameters and those identified for use in advanced safety
algorithms. Less critical sensors that might provide
additional analytical redundancy coverage were also
included. In general, only one measurement per parameter
was analyzed in this task. However, several of the
“redundant” sensors for certain parameters turned out to
provide significantly different measurements (e.g., HPFT
DS T). In these cases all redundant measurements were
analyzed, resulting in a final analysis data set of 53
measurements. .

The primary objective of this task was to consider
the relationships between various engine parameters, thus
redundant sensors were typically not evaluated. Several
redundant measurements were included after an initial

analytical and statistical survey identified those which
showed significant differences.

D aration

The data sets used consisted of nine nominal test
firings for training and two additional test firings for
verification. These test cases included various engines
including multiple tests with the same engine serial
number, thus providing useful information on test to test
variations.

The sensor measurements were initially prepared by
removing the start transients (first seven seconds after
ignition) and the shutdown transients. The data was then
smoothed and reduced from approximately one-half
million data points per dataset to 50,000 data points per
dataset to make the modeling procedures tractable. The
reduction involved eliminating data points in time
intervals during which all channels were exhibiting linear -
behavior (e.g., during steady-state). Only routines which
computed model coefficients were run on this reduced data;
all other routines, including all validation tests, used the
original full sample data.

Empirical Model Selection

Initially, first and third degree binary curve fits were
computed between all pairs of selected sensors. The curve
fits were ranked for each test according to minimal residual
variance and the rankings were averaged across the nine
training test firings (e.g., if a model had the third lowest
residual variation in half of the tests and the fourth lowest
residual variation in the other half, its final ranking would
be 3.5).

These rankings were analyzed and the top three
candidate models were selected for each parameter. Other
than removing redundancies from consideration,
parameters were selected on the basis of their ranking and
knowledge of nominal SSME operation.

The linear and cubic fit coefficients and residual
characteristics for the three selected empirical relations for
each sensor were then computed. Nine sets of coefficients
were computed for each relation by performing linear

Test Date Duration Notes
(seconds) .
TTB-031 4/15/92 85 Nominal firing. No false alarms, no missed detections.
TTB-032 4/28/92 205 Nominal firing. No false alarms, no missed detections.
TTB-033 5/14/92 18 Ambient powerhead temperature redline cutoff. No false
alarms, no missed detections.
TTB-034 5/28/92 210 Nominal firing. No false alarms, no missed detections.
TTB-035 6/11/92 200 Nominal firing. No false alarms, no missed detections.

Table 2. Technology Test Bed Test Results



regression on each of the nine training datasets
individually. A composite model was then formed for each
relation by averaging the coefficients obtained for each
training dataset. This composite model was then evaluated
against each of the training datasets, and the mean and
standard deviation of the residual computed. Finally, the

~ average of these means and standard deviations for the
composite model was computed as a measure of the
overall quality of the model.

Results of Empirical Modeling

Relations were successfully developed for 33 of the
53 measurements analyzed using linear and cubic binary
models. Of the remaining 20 measurements, two were
found to be anomalous and six appeared amenable to
multi-parameter regression modeling (i.e., appeared to be a
function of more than any one other parameter). The
remaining 12 measurements essentially did not correlate
well to any other measurements. A good example of this
set is sensor 1951 (MCC LINER CAVITY PRESSURE).
According to SSME data analysts, this measures the
pressure in a cavity between the inside of the MCC and
the outer wall of the combustion chamber. The normal
behavior for this sensor is to drop during start (as the
MCC heats up, the cavity pulls a vacuum and the pressure
drops) and then level off for the rest of the test. This
parameter's value is thus primarily a function of time
from START. These measurements which do not correlate
well to other parameters can be dropped from the list of
sensors evaluated by the SDV system, unless they are
needed for control, redline, or health monitoring purposes,
in which case a more focused modeling effort will need to
be undertaken.

In summary, a large percentage of the sensors on
SSME can be successfully modeled using linear and cubic
polynomial regression techniques. The remaining sensors
could be modeled using muiti-parameter models, or other
forms of models such as time-based models of nominal
behavior (e.g., a function of time since engine start), or
more advanced models such as neural networks. For
parameters which are relatively constant during a nominal
engine firing and which exist primarily to detect specific
failure modes (e.g., sensor 1951 exists primarily to detect
MCC burn-through), models may be developed by using
data from engine anomalies or failure simulations.

h: ristic Equation Selection

Characteristic equations are models whose forms are
guided by first principles knowledge; the model
coefficients are still computed empirically. The
characteristic relations were identified through
consideration of available sensors and knowledge of engine
first principles. Of those considered, the sparsity of

sensors on the SSME allowed only three types to be
applied: pump flow to impeller speed, pressure rise across
a pump to the square of its speed; and line resistance
(pressure drop to the flow squared).

Results of Ch ristic Modelin

First-principle models are difficult to derive for the
SSME due to the scarcity of sensors relative to the
complexity of the engine. In taking a very conservative
approach, only 7 characteristic equations (with 30
parameter variations) could be fully justified as physically
sound. Only one of these 7 equations failed to provide
any useful predictive models (relating pressure drop across
LPFP to the square of LPFP SPEED).

VII. On-Going and F Work

This section briefly describes the technical goals of
the 1993-95 LeRC Real-Time Sensor Data Validation
task, and the design extensions to the AREC-based
software required to meet them [7].

The primary goal of this task is to scale up the
eight-channel sensor validation system developed and
tested on the AREC to validate approximately 100
channels of data from the SSME in real-time.
Fundamentally, this will not require any changes to the
run-time algorithms, or to the established methodology
for developing and validating analytical redundancy models
or for tuning and validating the network.

Operation During Power-Level Transients

The AREC-based SDV system did not operate
during engine start, shutdown, or power level transitions.
The new SDV system will operate, at a minimum, on the
latter of these transients. Thus, the system will be in
continuous operation from approximately four seconds
after mainstage has been achieved until the shutdown
signal is detected.

To accomplish monitoring through mainstage
power level transitions, the SDV system will utilize
multiple sets of model thresholds and hard failure
excursion thresholds. One set of thresholds will be used
during steady-state (as in the AREC-hosted system), while
other thresholds will be used during engine transients and
during the bias training period at the start of each steady-
state interval. These transient thresholds will undoubtedly
be looser constraints on engine behavior. While the SDV
system will not be as sensitive to soft sensor failures
during the transient intervals, it will still be able to catch
hard failures following two samples of anomalous data.



I ion of Adv. Model

Several groups are developing advanced models,
such as neural networks, which relate data from SSME
sensors [8-11]. Since these models appear to perform
very well, even during power transients, they are excellent
candidates for integration into the validation network as
long as their run-time execution is not too
computationally intensive. As NASA provides these
models, Aerojet will test and integrate them into the
system where needed to provide a more robust validation
capability.

i velopment and T

The SDV system developed under this task will be
ported to run on a 486 and delivered to the MSFC
Technology Test Bed, where it will receive data in real-
time from either live engine firings, or from playbacks of
previous tests. Aerojet and LeRC will be able to run the
system and assess its performance remotely via network
connections. The system will have a text-based display
and various diagnostic routines to enable its performance
to be thoroughly characterized.

VIII. Conclusion '

The fundamental idea of using analytical redundancy
to perform sensor data validation in real time on the Space
Shuttle Main Engine has been demonstrated by the work
performed on this project. However, while obtaining
models for the majority of sensors used for control,
redline, and advanced anomaly detection purposes appears
to be straightforward, a small set of sensors may require
extra modeling work if they are to be kept in the
validation network.

The current work in progress will culminate in a
test of the scalability of the approach, by validating data
from over 100 sensors in real-time during Technology
Test Bed firings. However, the ultimate goal of this work
is to integrate the sensor data validation algorithms into a
future enhanced Space Shuttle Main Engine controller;
overall system reliability will be improved through the
validation of control, redline and anomaly detection
parameters during flight.

Acknowledgement
This work was supported by the NASA OACT

ETO program through a NASA / Lewis Research Center
Contract NAS 3-25883.

10.

11.

References

Makel, Darby, Timothy Bickmore, and William
Flaspohler, Development of Life Prediction
Capabilities for Liquid Propulsion Rocket Engines
— Task 3, Sensor Data Validation and
Reconstruction, Phase 1: System Architecture
Study Final Report, Aerojet Propulsion Division,
Contract NAS 3-25883, March 1991.

Pearl, 1., Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, Morgan
Kaufmann, San Mateo, California, 1988.
Neapolitan, R., Probabilistic Reasoning in Expert
Systems: Theory and Algorithms, Wiley
Interscience, New York, 1990.

De Bruyne, Frank, Probabilistic Sensor Validation,
Final Project ME290M, Department of Mechanical
Engineering, University of California at Berkeley,
Fall 1991.

Results from Simulation Laboratory Testing of a
Real-Time Sensor Data Validation System,
Aerojet Propulsion Division, 27 March 1992,
Bickmore, Timothy, Real-Time Sensor Data

" Validation, NASA CR-195295, March, 1994.

Bickmore, Timothy, “A Probabilistic Approach to
Sensor Data Validation”, Paper AIAA 92-3163,
AIAA 28th Joint Propulsion Conference,
Nashville, Tennessee, 1992.

Meyer, Claudia M., and William A, Maul, The
Application of Neural Networks to the SSME
Startup Transient, Paper #91-2530, 27th Joint
Propulsion Conference, June, 1991. g
Naassan, Kathryn, Sensor Validation for the Space
Shuttle Main Engine Controller, Master's Thesis,
Department of Mechanical Engineering, University
of California at Berkeley, December, 1991.
‘Wheeler, Kevin, and Atam Dhawan, Radial Basis
Function Neural Networks Applied to NASA
SSME Data, Technical Report TR154/6/93/ECE,
Department of Electrical and Computer
Engineering, University of Cincinnati, 1993.
Doniere, Timothy, and Atam Dhawan, LVQ and
Backpropagation Neural Networks Applied to
NASA SSME Data, Technical Report
RT156/6/93/ECE, Department of Electrical and
Computer Engineering, University of Cincinnati,
1993.



